SoLAR - Living Quarter Energy Pilot Achieving Maximum Self Sufficiency

Baden-Württemberg INISTERIUM EÜR HMWELT KUMA UND ENERGIEWIRTSCHAL Smart Grid ohne Lastgangmessung Allensbach - Rado **Contract Partners Funded Project** 1SC International Solar Energy Research Center Konstanz kaufmann bau.com **Associated Partners** / Easy B/S/H/ WEIDER Smart Grid **stadtwerk** haßfurt /swt **NaturEnergie** von Energiedienst **Supporting Partners** Miele Buderus E3AD0 ALLENSBACH GEMEINDEWERKE BODANRÜCK m Radances inpuncto XX Netze BW STADTWERKE ADVANCING ELECTRONIC: Hochschule Offenburg offenburg.university ... and TECHNISCHE SmartGridsBV others Technische Universität Münche Energieg intelligent vergetzen

Solving the Storage Problem with "Virtual Batteries"

Sector Coupling for more Efficiency – und for more "Virtual Batteries"

Electric Devices

- Load shifting as "Virtual Battery"
- Control power possible

Heat Pumps

- Energy storage by heat
- 4 x more efficient than gas heating
 - High feed temperatures

Efficient heat use

Electricity and heat lead

CHP and Fuel Cells

mergie werkstatt

Electric Vehicles

- 75% less energy consumption compared to gasoline and diesel
- Smart Charging "Virtual Battery"

SoLAR: Decentral Energy Management

heat pump

Real Estate and Flexible Devices

- 9 houses with 25 apartments
- KfW 40 insulation standard (new buildings)
- 14 PV plants (Σ 70 kWp)
- 12 heat pumps 5 kW_{th} (ground water)
- 1 CHP 21 kW_{el}, 46 kW_{th}
- charging stations for electric vehicles
- battery storages (SDH, KfW 40+)
- flexible home appliances for 25 apartments (e.g. washing machine, dishwasher, tumble dryer, refrigerator, freezer)

\rightarrow More then 100 controlled devices

Virtual Demonstrator

A SoLAR base : Simulation - AnyLogic Professional

-- eirer

Decentral Energy Management Scenario Summer

19.11.2020 SoLAR - Demonstrating the Energy System of Tomorrow

8 19.11.2020 SoLAR - Demonstrating the Energy System of Tomorrow

transformer RI North Goals: nationer 12 matistab 1200 datum 19,01.20 • 7.00.2018

Current load of MV/LV transformer

... voltage at grid terminal

- Stabilizing of the electricity grid
- Consistent tariff system

Prospect: Extrapolation Concept

level	quantity terminals	sectors	technologies & model(s)	
4 region/TSO	3 000 000	household commercial industry	Energy Hubs <	 frequency/inertia residual load/control zone balance
3 community/ MV trafo	5 000	household commercial industry	Energy Hu • Scaling up of households from lev • Energy Hubs for trade (new) • Energy Hubs für industry (new)	I bs el 2
2 local/ LV trafo	100	household	Virtual Demonstrator technologies & visualization like level 1 	Energy Hubs simplified simulation of flexibilities via "battery model"
1 real estate	25	household	Virtual Demonstrator	 CHP / heat pumps electric heater household appliances e-mobility batteries

Energy System

Source follows demand

-

Energy System Transition

Thanks a lot for your attention!

Swarm intelligence

Demand follows source